Essay for you

Euryarchaeota Classification Essay

Rating: 5.0/5.0 (34 Votes)

Category: Essay

Description

StateMaster - Encyclopedia: Euryarchaeota

Archaeoglobi
Halobacteria
Methanobacteria
Methanococci
Methanomicrobia
Methanopyri
Thermococci
Thermoplasmata Scientific classification or biological classification is a method by which biologists group and categorize species of organisms. Phyla / Classes Phylum Crenarchaeota Phylum Euryarchaeota Halobacteria Methanobacteria Methanococci Methanopyri Archaeoglobi Thermoplasmata Thermococci Phylum Korarchaeota Phylum Nanoarchaeota Archaea (; from Greek αρχαία, ancient ones; singular Archaeum, Archaean, or Archaeon), also called Archaebacteria (), is a major division of living organisms. MCMXC redirects here; for the Enigma album, see MCMXC a. Genera Archaeoglobus Ferroglobus The Archaeoglobi are a family of Archaea, with two genera. Genera Haloarcula Halobacterium Halobaculum Halococcus Haloferax Halogeometricum Halorubrum Haloterrigena Natrialba Natrinema Natronobacterium Natronococcus Natronomonas Natronorubrum The halobacteria are a family of archaea, found in water saturated or nearly saturated with salt. Order Methanobacteriales In taxonomy, the Methanobacteria are a class of the Euryarchaeota. Order Methanococcales In taxonomy, the Methanococci are a class of the Euryarchaeota. Orders Methanomicrobiales Methanosarcinales In taxonomy, the Methanomicrobia are a class of the Euryarchaeota. Binomial name Methanopyrus kandleri AV19 Slesarev AI et al. Order Thermococcales In taxonomy, the Thermococci are a class of the Euryarchaeota. Families Thermoplasmataceae Picrophilaceae Ferroplasmataceae The Thermotoplasmata are a class of archaea.

The Euryarchaeota are a major group of Archaea. They include the methanogens. which produce methane and are often found in intestines, the halobacteria. which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes. They are separated from the other archaeans based mainly on rRNA sequences. Phyla / Classes Phylum Crenarchaeota Phylum Euryarchaeota Halobacteria Methanobacteria Methanococci Methanopyri Archaeoglobi Thermoplasmata Thermococci Phylum Korarchaeota Phylum Nanoarchaeota Archaea (; from Greek αρχαία, ancient ones; singular Archaeum, Archaean, or Archaeon), also called Archaebacteria (), is a major division of living organisms. Methanogens are archaea that produce methane as a metabolic byproduct. Genera Haloarcula Halobacterium Halobaculum Halococcus Haloferax Halogeometricum Halorubrum Haloterrigena Natrialba Natrinema Natronobacterium Natronococcus Natronomonas Natronorubrum The halobacteria are a family of archaea, found in water saturated or nearly saturated with salt. Thermophiles produce some of the bright colors of Grand Prismatic Spring, Yellowstone National Park A thermophile is an organism – a type of extremophile – which thrives at relatively high temperatures, up to about 60 °C. Many thermophiles are archaea.

External links

Categories: Archaea stubs | Archaea phyla

Other articles

Euryarchaeota classification essay

Taxobox
color = #F3E0E0
name = Euryarchaeota


image_width = 200px
image_caption = " Halobacterium " sp. strain NRC-1, each cell about 5 µm in length.
domain = Archaea
regnum = Euryarchaeota
phylum = Euryarchaeota
phylum_authority = Woese, Kandler & Wheelis, 1990
subdivision_ranks = Classes
subdivision =
* Archaeoglobi
* Halobacteria
* Methanobacteria
* Methanococci
* Methanomicrobia
* Methanopyri

* Thermococci
* Thermoplasmata
synonyms =
* Euryarchaeota Woese et al. 1990

* Euryarchaeota Garrity and Holt 2002

* not Euryarchaeota Cavalier-Smith 2002

In taxonomy. the Euryarchaeota (Greek for "broad old quality") are a phylum of the Archaea. [See the NCBI [http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=28890 webpage on Euryarchaeota ]. Data extracted from the cite web | url=ftp://ftp.ncbi.nih.gov/pub/taxonomy/ | title=NCBI taxonomy resources | publisher= National Center for Biotechnology Information | accessdate=2007-03-19 ]

The Euryarchaeota include the methanogen s, which produce methane and are often found in intestines, the halobacteria. which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes. They are separated from the other archaeans based mainly on rRNA sequences.

* Archaeal Richmond Mine Acidophilic Nanoorganisms (ARMAN)

Euryarchaeota: Wikis (The Full Wiki)

Euryarchaeota: Wikis
  • Euryarchaeota Woese et al. 1990
  • Euryarchaeota Garrity and Holt 2002
  • not Euryarchaeota Cavalier-Smith 2002

The Euryarchaeota include the methanogens. which produce methane and are often found in intestines, the halobacteria. which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes. They are separated from the other archaeans based mainly on rRNA sequences.

References Further reading Scientific journals
  • Cavalier-Smith, T (2002). "The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". Int. J. Syst. Evol. Microbiol.52. 7–76. PMID 11837318.
  • Stackebrandt, E; Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002). "Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology". Int. J. Syst. Evol. Microbiol.52. 1043–1047. doi. 10.1099/ijs.0.02360-0. PMID 12054223.
  • Christensen, H; Bisgaard M, Frederiksen W, Mutters R, Kuhnert P, Olsen JE (2001). "Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision)". Int. J. Syst. Evol. Microbiol.51. 2221–2225. PMID 11760965.
  • Gurtler, V; Mayall BC (2001). "Genomic approaches to typing, taxonomy and evolution of bacterial isolates". Int. J. Syst. Evol. Microbiol.51. 3–16. PMID 11211268.
  • Dalevi, D; Hugenholtz P, Blackall LL (2001). "A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data". Int. J. Syst. Evol. Microbiol.51. 385–391. PMID 11321083.
  • Keswani, J; Whitman WB (2001). "Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes". Int. J. Syst. Evol. Microbiol.51. 667–678. PMID 11321113.
  • Young, JM (2001). "Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy". Int. J. Syst. Evol. Microbiol.51. 945–953. PMID 11411719.
  • Christensen, H; Angen O, Mutters R, Olsen JE, Bisgaard M (2000). "DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA". Int. J. Syst. Evol. Microbiol.50. 1095–1102. PMID 10843050.
  • Xu, HX; Kawamura Y, Li N, Zhao L, Li TM, Li ZY, Shu S, Ezaki T (2000). "A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube". Int. J. Syst.Evol. Microbiol.50. 1463–1469. PMID 10939651.
  • Young, JM (2000). "Suggestions for avoiding on-going confusion from the Bacteriological Code". Int. J. Syst. Evol. Microbiol.50. 1687–1689. PMID 10939677.
  • Hansmann, S; Martin W (2000). "Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis". Int. J. Syst. Evol. Microbiol.50. 1655–1663. PMID 10939673.
  • Tindall, BJ (1999). "Proposal to change the Rule governing the designation of type strains deposited under culture collection numbers allocated for patent purposes". Int. J. Syst. Bacteriol.49. 1317–1319. PMID 10490293.
  • Tindall, BJ (1999). "Proposal to change Rule 18a, Rule 18f and Rule 30 to limit the retroactive consequences of changes accepted by the ICSB". Int. J. Syst. Bacteriol.49. 1321–1322. PMID 10425797.
  • Tindall, BJ (1999). "Misunderstanding the Bacteriological Code". Int. J. Syst. Bacteriol.49. 1313–1316. PMID 10425796.
  • Tindall, BJ (1999). "Proposals to update and make changes to the Bacteriological Code". Int. J. Syst. Bacteriol.49. 1309–1312. PMID 10425795.
  • Palys, T; Nakamura LK, Cohan FM (1997). "Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data". Int. J. Syst. Bacteriol.47. 1145–1156. PMID 9336922.
  • Euzeby, JP (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int. J. Syst. Bacteriol.47. 590–592. PMID 9103655.
  • Clayton, RA; Sutton G, Hinkle PS Jr, Bult C, Fields C (1995). "Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa". Int. J. Syst. Bacteriol.45. 595–599. PMID 8590690.
  • Murray, RG; Schleifer KH (1994). "Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes". Int. J. Syst. Bacteriol.44. 174–176. PMID 8123559.
  • Winker, S; Woese CR (1991). "A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics". Syst. Appl. Microbiol.14. 305–310. PMID 11540071.
  • Woese, CR; Kandler O, Wheelis ML (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc. Natl. Acad. Sci. USA87. 4576–4579. doi. 10.1073/pnas.87.12.4576. PMID 2112744.
  • Achenbach-Richter, L; Woese CR (1988). "The ribosomal gene spacer region in archaebacteria". Syst. Appl. Microbiol.10. 211–214. PMID 11542149.
  • McGill, TJ; Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE (1986). "Characteristic archaebacterial 16S rRNA oligonucleotides". Syst. Appl. Microbiol.7. 194–197. PMID 11542064.
  • Woese, CR; Olsen GJ (1984). "The phylogenetic relationships of three sulfur dependent archaebacteria". Syst. Appl. Microbiol.5. 97–105. PMID 11541975.
  • Woese, CR; Fox GE (1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". Proc. Natl. Acad. Sci. USA74. 5088–5090. doi. 10.1073/pnas.74.11.5088. PMID 270744.
Scientific books
  • Garrity GM, Holt JG (2001). "Phylum AII. Euryarchaeota phy. nov.". in DR Boone and RW Castenholz, eds. Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. pp. 169. ISBN 978-0387987712.
Scientific databases External links

Euryarchaeota: definition of Euryarchaeota and synonyms of Euryarchaeota (English)

Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definitions - Euryarchaeota

report a problem

1. (MeSH ) A phylum of ARCHAEA comprising at least seven classes: Methanobacteria, Methanococci, Halobacteria (extreme halophiles), Archaeoglobi (sulfate-reducing species), Methanopyri, and the thermophiles: Thermoplasmata, and Thermococci.

definition (more) synonyms - Euryarchaeota Euryarchaeota References Further reading Scientific journals
  • Cavalier-Smith, T (2002). "The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". Int. J. Syst. Evol. Microbiol.52 (Pt 1): 7–76. PMID  11837318.  
  • Stackebrandt, E; Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002). "Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology". Int. J. Syst. Evol. Microbiol.52 (Pt 3): 1043–1047. DOI :10.1099/ijs.0.02360-0. PMID  12054223.  
  • Christensen, H; Bisgaard M, Frederiksen W, Mutters R, Kuhnert P, Olsen JE (2001). "Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision)". Int. J. Syst. Evol. Microbiol.51 (Pt 6): 2221–2225. DOI :10.1099/00207713-51-6-2221. PMID  11760965.  
  • Gurtler, V; Mayall BC (2001). "Genomic approaches to typing, taxonomy and evolution of bacterial isolates". Int. J. Syst. Evol. Microbiol.51 (Pt 1): 3–16. PMID  11211268.  
  • Dalevi, D; Hugenholtz P, Blackall LL (2001). "A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data". Int. J. Syst. Evol. Microbiol.51 (Pt 2): 385–391. PMID  11321083.  
  • Keswani, J; Whitman WB (2001). "Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes". Int. J. Syst. Evol. Microbiol.51 (Pt 2): 667–678. PMID  11321113.  
  • Young, JM (2001). "Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy". Int. J. Syst. Evol. Microbiol.51 (Pt 3): 945–953. DOI :10.1099/00207713-51-3-945. PMID  11411719.  
  • Christensen, H; Angen O, Mutters R, Olsen JE, Bisgaard M (2000). "DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA". Int. J. Syst. Evol. Microbiol.50 (3): 1095–1102. DOI :10.1099/00207713-50-3-1095. PMID  10843050.  
  • Xu, HX; Kawamura Y, Li N, Zhao L, Li TM, Li ZY, Shu S, Ezaki T (2000). "A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube". Int. J. Syst.Evol. Microbiol.50 (4): 1463–1469. DOI :10.1099/00207713-50-4-1463. PMID  10939651.  
  • Young, JM (2000). "Suggestions for avoiding on-going confusion from the Bacteriological Code". Int. J. Syst. Evol. Microbiol.50 (4): 1687–1689. DOI :10.1099/00207713-50-4-1687. PMID  10939677.  
  • Hansmann, S; Martin W (2000). "Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis". Int. J. Syst. Evol. Microbiol.50 (4): 1655–1663. DOI :10.1099/00207713-50-4-1655. PMID  10939673.  
  • Tindall, BJ (1999). "Proposal to change the Rule governing the designation of type strains deposited under culture collection numbers allocated for patent purposes". Int. J. Syst. Bacteriol.49 (3): 1317–1319. DOI :10.1099/00207713-49-3-1317. PMID  10490293.  
  • Tindall, BJ (1999). "Proposal to change Rule 18a, Rule 18f and Rule 30 to limit the retroactive consequences of changes accepted by the ICSB". Int. J. Syst. Bacteriol.49 (3): 1321–1322. DOI :10.1099/00207713-49-3-1321. PMID  10425797.  
  • Tindall, BJ (1999). "Misunderstanding the Bacteriological Code". Int. J. Syst. Bacteriol.49 (3): 1313–1316. DOI :10.1099/00207713-49-3-1313. PMID  10425796.  
  • Tindall, BJ (1999). "Proposals to update and make changes to the Bacteriological Code". Int. J. Syst. Bacteriol.49 (3): 1309–1312. DOI :10.1099/00207713-49-3-1309. PMID  10425795.  
  • Palys, T; Nakamura LK, Cohan FM (1997). "Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data". Int. J. Syst. Bacteriol.47 (4): 1145–1156. DOI :10.1099/00207713-47-4-1145. PMID  9336922.  
  • Euzeby, JP (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int. J. Syst. Bacteriol.47 (2): 590–592. DOI :10.1099/00207713-47-2-590. PMID  9103655.  
  • Clayton, RA; Sutton G, Hinkle PS Jr, Bult C, Fields C (1995). "Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa". Int. J. Syst. Bacteriol.45 (3): 595–599. DOI :10.1099/00207713-45-3-595. PMID  8590690.  
  • Murray, RG; Schleifer KH (1994). "Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes". Int. J. Syst. Bacteriol.44 (1): 174–176. DOI :10.1099/00207713-44-1-174. PMID  8123559.  
  • Winker, S; Woese CR (1991). "A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics". Syst. Appl. Microbiol.14 (4): 305–310. PMID  11540071.  
  • Woese, CR; Kandler O, Wheelis ML (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc. Natl. Acad. Sci. USA87 (12): 4576–4579. Bibcode 1990PNAS. 87.4576W. DOI :10.1073/pnas.87.12.4576. PMC  54159. PMID  2112744. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=54159.  
  • Achenbach-Richter, L; Woese CR (1988). "The ribosomal gene spacer region in archaebacteria". Syst. Appl. Microbiol.10. 211–214. PMID  11542149.  
  • McGill, TJ; Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE (1986). "Characteristic archaebacterial 16S rRNA oligonucleotides". Syst. Appl. Microbiol.7 (2–3): 194–197. DOI :10.1016/S0723-2020(86)80005-4. PMID  11542064.  
  • Woese, CR; Olsen GJ (1984). "The phylogenetic relationships of three sulfur dependent archaebacteria". Syst. Appl. Microbiol.5. 97–105. DOI :10.1016/S0723-2020(84)80054-5. PMID  11541975.  
  • Woese, CR; Fox GE (1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". Proc. Natl. Acad. Sci. USA74 (11): 5088–5090. Bibcode 1977PNAS. 74.5088W. DOI :10.1073/pnas.74.11.5088. PMC  432104. PMID  270744. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=432104.  
Scientific books
  • Garrity GM, Holt JG (2001). "Phylum AII. Euryarchaeota phy. nov.". In DR Boone and RW Castenholz, eds. Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. pp. 169. ISBN  978-0-387-98771-2.  
Scientific databases External links

Chupps - Essay by Charmander1

Chupps Essay

Species: S. pneumoniae

Habitat
It is found in your saliva and in 1974 they changed the name from Diplococcus pneumonia to Streptococcus pneumonia because of its growth in liquid media. It can be found in the upper human respiratory system

Evolution
Streptococcus pneumonia is a member of the Mitis group of streptococci which includes 12 differn’t species. While other species of this group are considered prototypes of commensal bacteria, Streptococci pneumonia is amongs the most frequent microbial killers worldwide. Scientist think that this organism evolved along time ago. They do not specific dates.

Habitat
Streptococcus pneumonia grows best in five percent carbon dioxide. It needs catalase base to be able to grow on agar plates. When grown on agar plates they grow in colonies. It doubles in around twenty minutes.

Interesting Facts
* S. pneumonia is one of the most common cause of meningitis in adults and young adults.
* It also is one of the top two isolates found in ear infections.
* They also have a polysaccharide capsule that acts as a virulence factor for the organism.

Habitat
Halobacterium are part of the group extremeophiles, which means they live in extreme enviourments. Halobacteria can be found in highly salty lakes such as Great Salt Lake and the Dead Sea. The best temperature for their most growth is 37 degrees Celsius, which is about 97 degrees Fahrenheit.

Reproduction
Halobacterium use binary fission to split themselves. Halobacterium are also motile. That is all biologists know about their reproduction.